The generator matrix
1 0 1 1 1 X 1 1 0 1 1 X 1 1 0 1 1 X 1 1 0 1 1 X 1 1 1 1 0 X 1 1 1 1 0 X 1 1 1 1 0 X 1 1 1 1 0 X 1 1 1 1 0 X X X 0 1 1 1 1 X X 0 0 X 1 1 X X 0 1 1 0 X X X 0 1 1 1 1 0 X X X 0 1 1 1 1 X X 0 0 X
0 1 X+1 X 1 1 0 X+1 1 X 1 1 0 X+1 1 X 1 1 0 X+1 1 X 1 1 0 X+1 X 1 1 1 0 X X+1 1 1 1 0 X X+1 1 1 1 0 X X+1 1 1 1 0 X X+1 1 1 1 0 X X 0 X X+1 1 0 X X 1 1 0 X 0 X X X+1 1 1 1 0 X X 0 X X+1 1 1 1 0 X X 0 X X+1 1 0 X X 1 1
generates a code of length 96 over Z2[X]/(X^2) who´s minimum homogenous weight is 102.
Homogenous weight enumerator: w(x)=1x^0+12x^102+3x^104
The gray image is a linear code over GF(2) with n=192, k=4 and d=102.
As d=102 is an upper bound for linear (192,4,2)-codes, this code is optimal over Z2[X]/(X^2) for dimension 4.
This code was found by Heurico 1.16 in 0.186 seconds.